

Time : 3 Hours
ઘЯณ : ๆ ఐஞ্ञ
Full Marks : 250
घূर्త్ व̊ڭ14 : 980
The figures in the right-hand margin indicate marks.

Candidates should attempt any 10 (ten) questions of
GROUP-A with word limit of 250 words and should attempt any 5 (five) questions from GROUP-B with word limit of 300 words.

GROUP-A

1. (a) Explain the characteristics of Coriolis force. What role does it play in atmospheric air flow pattern?

(b) Describe the motion of Foucault pendulum.

Foucault pendulum ๑ எఠิ ฉส্สেเก। దด।
2. (a) If you walk directly towards a plane mirror at a speed v, at what speed does your image approach you?

(b) Suppose you cut away lower two-thirds of a lens. Is an image still formed? Why or why not?

(c) Explain the lasing principle and working of a three-level LASER. Lasing principle ∇° V
3. (a) "There is no fundamental distinction between interference and diffraction." Explain. Can sound waves undergo diffraction around an edge? $6+2=8$

(b) What are constraints? How many types of constraint are there? Give one example for each.

7

4. (a) Explain Rutherford scattering. Suppose you repeat the same experiment using a thin sheet of solid hydrogen in place of gold foil. What would you observe?

(b) During a spaceflight to a distant star, an astronaut and her twin brother on the earth send radio signals to each other at annual intervals. What is the frequency of the radio signal each twin receives from the other during the flight to the star if the astronaut is moving at $v=0.8 \mathrm{c}$?
What is the frequency during the return flight at the same speed?

5. (a) An unstable particle of mass M decays into two particles with masses m_{1} and m_{2} respectively. Using conservation of energymomentum principle, find the kinetic energy of m_{2}.

(b) Show that four-velocity vector is orthogonal to four-acceleration vector.

7
६ถ્ઞો |થ 6』 four-velocity vector four-acceleration vector घู orthogonal थ6ร ।
6. Explain the method of images procedure. A point charge is placed in front of a grounded conducting sphere. Find the potential at any point $P(r, \theta)$ outside the sphere, using method of images. $5+10=15$

7. (a) Describe the qualitative nature of solutions $x(t)$ of a damped oscillator $m \ddot{x}+b \dot{x}+k x=0$.
曰สู่ด ตด।
(b) Explain how Maxwell fixed Ampere's law with the introduction of 'displacement current' term.

8. (a) Explain the principle of transformer in detail.

(b) Which of Maxwell's equations explain how a credit card reader works? What would happen if the card was not swiped, but just sat motionless in the reader's slot?

Candidate

 must not write on this margin.[P.T.O.
9. (a) Explain the terms (i) skin depth and (ii) Brewster's angle. $4+4=8$

(b) A directional loudspeaker aims a sound wave of wavelength λ at a wall. At what distance from the wall could you stand and hear no sound at all?

10. (a) Starting from four Maxwell equations obtain the wave equation for vector potential \vec{A}.
 equation घાgु ๓々।
(b) Describe the $P-V$ diagram for Otto cycle and diesel cycle. 7

11. (a) Explain the characteristics of isobaric, isothermal and adiabatic processes through P - V diagram for constant amount of an ideal gas.

(b) Despite being the most common element in the Universe, there is hardly any hydrogen in the Earth's atmosphere. Why? 7

12. (a) What is Joule-Kelvin effect? Explain using a diagram. How does one liquefy gases?
 ๑ถกฺ ติघลิ?
(b) Consider an attractive central force of the form $F(r)=-\frac{k}{r^{n}}$. What is the condition on n that a stable circular orbit exists? $\quad 7$

GROUP-B

13. (a) Obtain the rocket equation in free space.

(b) How does the equation change, if you consider vertical ascent under constant gravity? (No air resistance, Burn rate of fuel constant)

(c) A rocket is in outer space, far from any planet, when the rocket engine is turned on. In the first second of firing, the rocket ejects $\frac{1}{120}$ of its mass with a relative speed of $2400 \mathrm{~m} / \mathrm{s}$. What is the rocket's initial acceleration?

 ๓'สใ?
14. (a) What necessitated the introduction of Lorentz transformations in STR? Explain Lorentz transformations. A muon is in STR? Explain Lorentz transformations. A muon is
travelling through laboratory at three-fifths the speed of light. How long does it last? (Lifetime of muon is $2.0 \times 10^{-6} \mathrm{sec}$)

$$
3+4+3=10
$$

 ๑1ロถ घศવ $2.0 \times 10^{-6} \mathrm{sec}$)
(b) Explain the technique of Holography in detail.

15. (a) What is an optical fiber? Describe the propagation of electromagnetic pulse in a fiber.

(b) Set up the differential equation, which describes how charge q varies with time t in a LCR circuit. Give qualitative analysis of the solutions $q(t)$.

 घघाถ की।
16. (a) State four Maxwell equations and their physical significance.

(b) Prove by direct calculation, that the equations of electrostatics $\vec{\nabla} \cdot \vec{E}=4 \pi \rho$ and $\vec{\nabla} \times \vec{E}=0$, follow from the electric field of a point charge.

17. (a) Explain in detail, why daytime clear sky appears blue. 10

(b) Write a short note on Planck's radiation law. Does a black body
at 2000 kelvin emit X-rays? Does it emit radio waves? 10 Planck Gi radiation law @ઘ6Q VQ qo

18. (a) Distinguish among microcanonical, canonical and grand canonical ensembles.

Microcanonical, canonical $\vee จ^{\circ}$ grand canonical ensembles Яઘ્ય6ด

Candidate must not write on this margin. Clle lo
17. (a) Explain in detail, why daytime elear sky appears blue. 10
(b) Suppose you toss 4 identical coins (with Head and Tail) on the floor. List possible macroscopic states and microscopic states. 10

Candidate must not write on this margin. $\star \star \star$

