CSM-46/22
MATHEMATICS
สธิ
PAPER-I

Time: 3 Hours
ઘศณ : ๆ ఐஞ্ছ
Full Marks : 250
घূर्త్ర વొธ141 : 980
The figures in the right-hand margin indicate marks.

Candidates should attempt any 10 (ten) questions of GROUP-A with word limit of 250 words and should attempt any 5 (five) questions from GROUP-B with word limit of 300 words.

GROUP-A

1. Prove that every homomorphic image of a group G is isomorphic to some quotient group of G.
 group घાฐँ isomorphic थ66 ।
2. Prove that if H be a normal subgroup of a group G and K is a normal subgroup of G containing H, then G / K is isomorphic to $(G / H) /(K / H)$.

 ఏ® isomorphic ।

Candidate
must not
write on this margin.
3. Let G be a finite group and p be a prime. If p^{m} divides $o(G)$, then prove that G has at least one subgroup of order p^{m}.

15

 order थฐ ।
4. Prove that an ideal S of the ring of integers I is maximal if and only if S is generated by some prime integer.

5. In $V_{3}(R)$, where R is the field of real numbers. Examine each of the following sets of vectors for linearly independent :

(i) $\{(2,1,2),(8,4,8)\}$
(ii) $\{(1,2,0),(0,3,1),(-1,0,1)\}$
(iii) $\{(-1,2,1),(3,0,-1),(-5,4,3)\}$
6. Show that the vectors $(1,2,1),(2,1,0),(1,-1,2)$ form a basis of $R^{3}(R)$.

7. Prove that every n dimensional vector space $V(F)$ is isomorphic to $V_{n}(F)$.
घศાส ๑๐ 6a g684\% n dimensional vector space $V(F) V_{n}(F)$ g® isomorphic थ6ดุ ।
8. The mapping $f: V_{3}(F) \rightarrow V_{2}(F)$ defined by $f\left(a_{1}, a_{2}, a_{3}\right)=\left(a_{1}, a_{2}\right)$ is a homomorphism of $V_{3}(F)$ onto $V_{2}(F)$. What is the kernel of this homomorphism?
Mapping $f: V_{3}(F) \rightarrow V_{2}(F)$ defined by $f\left(a_{1}, a_{2}, a_{3}\right)=\left(a_{1}, a_{2}\right) V_{3}(F)$ onto

Candidate must not write on this margin.
9. In what direction, a line be drawn through the point $(1,2)$, so that its point of intersection with the line $x+y=4$ is at a distance $[(\sqrt{6}) / 3]$ from the given point?
 ลิష్య อิจ।
10. Find the equation of circle through the points of intersection of $x^{2}+y^{2}-1=0, x^{2}+y^{2}-2 x-4 y+1=0$ and touching the line $x+2 y=0$.
$x^{2}+y^{2}-1=0, x^{2}+y^{2}-2 x-4 y+1=0$ Q points of intersection $\checkmark Q^{\circ}$

11. Show that the equation $y^{2}+6 y-2 x+5=0$ represents parabola. Find its vertex, focus, length of latus rectum, equation of axis and directrix. 15
 vertex, focus, length of latus rectum, equation of axis $\checkmark \square^{\circ}$ directrix 681®।
12. The points $A(3,2,0), B(5,3,2)$ and $C(0,2,4)$ are the vertices of a triangle. Find the distance of the point A from the point in which bisector of angle $B A C$ meets $[B C]$.

 Q6Q।

GROUP-B

13. (i) Check the sequence $\left\{a_{n}\right\}$ defined as

$$
a_{n}=1+\frac{1}{6}+\frac{1}{11}+\cdots \cdots \cdots \cdots \cdots+\frac{1}{5 n-4}
$$

is Cauchy sequence or not.

Candidate must not write on this margin.

$$
a_{n}=1+\frac{1}{6}+\frac{1}{11}+\cdots \cdots \cdots \cdots+\frac{1}{5 n-4}
$$

Cauchy sequence की ลู 6 ²?
(ii) Test for the convergence for the following series :

$$
\frac{x}{1.2}+\frac{x^{2}}{2.3}+\frac{x^{3}}{3.4}+\frac{x^{4}}{4.5}+\cdots \cdots \cdots, \text { where } x>0
$$

$$
\frac{x}{1.2}+\frac{x^{2}}{2.3}+\frac{x^{3}}{3.4}+\frac{x^{4}}{4.5}+\cdots \cdots \cdots, \text { 6ઘ@ัO16Q } x>0
$$

14. (i) Show that the function $f(z)=\sqrt{|x y|}$ is not analytic at the origin even though Cauchy-Riemann equations are satisfied thereof.

(ii) Find the sum of the residues of $f(z)=\frac{\sin z}{z \cos z}$ at its poles inside the circle $|z|=2$. 20 Circle $|z|=2$ ญิ 6 थู ขุ। poles 6Q $f(z)=\frac{\sin z}{z \cos z}$ ล sum of the residues घ बझQ ロด ।
15. (i) Using the $\varepsilon-\delta$ definition, prove that $f(x)=\sqrt{x}$ is differential at $x=3$.

(ii) Find the asymptotes of $(x+y)^{2}(x+y+2)=x+9 y-2$.

16. (i) Find the area enclosed by the curves $x^{2}=8 y$ and $y=\frac{64}{x^{2}+16}$.

(ii) Test for the convergence for the improper integral $\int_{0}^{\infty} \frac{\sin x}{x} d x$.

Improper integral $\int_{0}^{\infty} \frac{\sin x}{x} d x$ घ|ळँ convergence शू घ囚1প্প6l దด ।
17. State Stokes' theorem and deduce Green's theorem from Stokes' theorem. Verify Stokes' theorem for $\vec{F}=\left(x^{2}+y^{2}\right) i-2 x y j$ taken around the rectangle bounded by the lines $x= \pm a, y=0, y=b$. 20

18. State Gauss divergence theorem and verify Gauss divergence theorem for $\vec{F}=\left(x^{2}-y z\right) i+\left(y^{2}-z x\right) j+\left(z^{2}-x y\right) k$ taken over the rectangular parallelepiped $0 \leq x \leq a, 0 \leq y \leq b, 0 \leq z \leq c$. 20 Gauss divergence theorem இ ६ธ્ષા| $\downarrow Q^{\circ}$ Gauss divergence theorem ఇ ๙ાษ ถQ।
$0 \leq x \leq a, 0 \leq y \leq b, 0 \leq z \leq c$ @a6ล గิๆ|ઘ|ฉขૃロ|
$\vec{F}=\left(x^{2}-y z\right) i+\left(y^{2}-z x\right) j+\left(z^{2}-x y\right) k$ घ|ณั

