

Time : 3 Hours ସମୟ : ୩ ଘଷ୍ଟା

Full Marks : 250 ପୂର୍ଣ୍ଣ ସଂଖ୍ୟା : ୨୫୦

The figures in the right-hand margin indicate marks. ପ୍ରଶ୍ୱପତ୍ରର ଡ଼ାହାଶ ପଟେ ପ୍ରତ୍ୟେକ ପ୍ରଶ୍ୱର ମାର୍କ ଦର୍ଶାଯାଇଛି ।

Candidates should attempt **any 10 (ten)** questions of **GROUP—A** with word limit of 250 words and should attempt **any 5 (five)** questions from **GROUP—B** with word limit of 300 words.

ପରୀକ୍ଷାର୍ଥୀମାନେ **GROUP—A** ରୁ ଯେକୌଶସି **୧୦**ଟି ପ୍ରଶ୍ଳର ଉତ୍ତର ୨୫୦ ଶବ୍ଦ ମଧ୍ୟରେ ଏବଂ **GROUP—B** ରୁ ଯେକୌଶସି **୫**ଟି ପ୍ରଶ୍ଳର ଉତ୍ତର ୩୦୦ ଶବ୍ଦ ମଧ୍ୟରେ ସୀମିତ ରଖବେ ।

GROUP-A

1. Prove that every homomorphic image of a group G is isomorphic to some quotient group of G. 15

ପ୍ରମାଶ କର ଯେ G group ର ପ୍ରତ୍ୟେକ homomorphic image G ର କିଛି quotient group ପାଇଁ isomorphic ଅଟେ ।

2. Prove that if H be a normal subgroup of a group G and K is a normal subgroup of G containing H, then G/K is isomorphic to (G/H)/(K/H). 15

ପ୍ରମାଶ କର ଯେ H ଯଦି ଗୋଟିଏ group Gର ଏକ ସାଧାରଶ subgroup ଏବଂ K ହେଉଛି G ଧାରଶ କରିଥିବା Gର ଏକ ମାଧାରଶ subgroup, ତେବେ G/K ହେଉଛି (G/H)/(K/H) ପ୍ରତି isomorphic ।

Candidate must not write on this margin. **3.** Let G be a finite group and p be a prime. If p^m divides o(G), then Candidate prove that G has at least one subgroup of order p^m . must not 15 write on $G = \P$ ଏକ finite group ହେବାକୁ ଦିଅ ଏବଂ $p^m = \P$ ଏକ prime ହେବାକୁ ଦିଆ । ଯଦି p^m , this margin. o(G) କୁ ବିଭାଜନ କରେ, ତେବେ ପ୍ରମାଣ କର ଯେ G ରେ ଅତି କମ୍ରେ ଗୋଟିଏ subgroup order ଅଛି । **4.** Prove that an ideal S of the ring of integers I is maximal if and only if S is generated by some prime integer. 15 ସମାଣ କର ଯେ integers I ର ଏକ ideal S ସର୍ବାଧକ ଅଟେ, ଯଦି ଏବଂ କେବଳ ଯଦି S କିଛି prime integer ଦ୍ୱାରା ଉତ୍ପନ୍ନ ହୁଏ । 5. In $V_3(R)$, where R is the field of real numbers. Examine each of the 15 following sets of vectors for linearly independent : $V_2(R)$ ରେ, ଯେଉଁଠାରେ R ହେଉଛି ପ୍ରକୃତ ସଂଖ୍ୟା ଗୁଡ଼ିକର କ୍ଷେତ୍ର । Linearly independent ପାଇଁ ନିମ୍ବଲିଖ୍ୱତ ପ୍ରେୟକ ଭେକୁର ସେଟ୍ଗୁଡ଼ିକ ପରୀକ୍ଷା କର : $(i) \{(2, 1, 2), (8, 4, 8)\}$ (ii) $\{(1, 2, 0), (0, 3, 1), (-1, 0, 1)\}$ (iii) $\{(-1, 2, 1), (3, 0, -1), (-5, 4, 3)\}$ **6.** Show that the vectors (1, 2, 1), (2, 1, 0), (1, -1, 2) form a basis of $R^{3}(R)$. 15 R³(R) ର ଏକ ଆଧାରର ଭେକର (1, 2, 1), (2, 1, 0), (1, −1, 2) କୁ ଦର୍ଶାଆ । 7. Prove that every n dimensional vector space V(F) is isomorphic to 15 $V_{n}(F)$. ପ୍ରମାଶ କର ଯେ ପ୍ରତ୍ୟେକ *n* dimensional vector space V(F) $V_n(F)$ ପ୍ରତି isomorphic ଅଟନ୍ତି । 8. The mapping $f: V_3(F) \rightarrow V_2(F)$ defined by $f(a_1, a_2, a_3) = (a_1, a_2)$ is a homomorphism of $V_3(F)$ onto $V_2(F)$. What is the kernel of this 15 homomorphism? Mapping $f: V_3(F) \rightarrow V_2(F)$ defined by $f(a_1, a_2, a_3) = (a_1, a_2) V_3(F)$ onto $V_2(F)$ ଏକ homomorphism ଅଟେ । ଏହି homomorphism ର kernel କ'ଶ?

/110

9. In what direction, a line be drawn through the point (1, 2), so that Candidate its point of intersection with the line x+y=4 is at a distance must not write on $\left[\left(\sqrt{6}\right)/3\right]$ from the given point? 15 this margin. କେଉଁ ଦିଗରେ ବିନ୍ଦ୍ର (1, 2) ମଧ୍ୟରେ ଏକ ରେଖା ଆଙ୍କିତ ହେବ, ଯାହାଫଳରେ ଦିଆଯାଇ ଥିବା ବିନ୍ଦୁଠାରୁ $\left[\left(\sqrt{6}\right)/3\right]$ ଦୂରତାରେ x+y=4 ରେଖା ସହିତ ଏହାର point of intersection ରହିବ । 10. Find the equation of circle through the points of intersection of $x^{2} + y^{2} - 1 = 0$, $x^{2} + y^{2} - 2x - 4y + 1 = 0$ and touching the line x + 2y = 0. 15 $x^2 + y^2 - 1 = 0$, $x^2 + y^2 - 2x - 4y + 1 = 0$ @ points of intersection 4@ x + 2y = 0 touching the line ମାଧ୍ୟମରେ ବୃତ୍ତର ସମୀକରଣ ବାହାର କର । **11.** Show that the equation $y^2 + 6y - 2x + 5 = 0$ represents parabola. Find its vertex, focus, length of latus rectum, equation of axis and directrix. 15 ଦର୍ଶାଅ ଯେ $y^2 + 6y - 2x + 5 = 0$ ସମୀକରଣ parabola କୁ ପ୍ରତିନିଧିତ୍ୱ କରେ । ଏହାର vertex, focus, length of latus rectum, equation of axis ଏବଂ directrix ଖୋଳ । **12.** The points A(3, 2, 0), B(5, 3, 2) and C(0, 2, 4) are the vertices of a triangle. Find the distance of the point A from the point in which bisector of angle BAC meets [BC]. 15 A(3, 2, 0), B(5, 3, 2) ଏବଂ C(0, 2, 4) ବିନ୍ଦୁଗୁଡ଼ିକ ଗୋଟିଏ triangle ର vertices ଅଟେ । A ବିନ୍ଦୁର ଦୂରତା ଖୋକ, ଯେଉଁ ବିନ୍ଦୁରେ BAC କୋଶର bisector [BC] ଠାରେ meet କରେ । GROUP-B **13.** (i) Check the sequence $\{a_n\}$ defined as

 $a_n = 1 + \frac{1}{6} + \frac{1}{11} + \dots + \frac{1}{5n-4}$

is Cauchy sequence or not.

/110

3

[P.T.O.

ପରିକାଷିତ କ୍ରମ $\{a_n\}$ ଯାଞ୍ଚ କର

 $a_n = 1 + \frac{1}{6} + \frac{1}{11} + \dots + \frac{1}{5n-4}$

Cauchy sequence କି ନୁହେଁ?

(ii) Test for the convergence for the following series :

 $\frac{x}{1.2} + \frac{x^2}{2.3} + \frac{x^3}{3.4} + \frac{x^4}{4.5} + \dots, \text{ where } x > 0.$

ନିମ୍ନ series ପାଇଁ convergence ନିମିତ୍ତ ପରୀକ୍ଷଣ :

$$\frac{x}{1.2} + \frac{x^2}{2.3} + \frac{x^3}{3.4} + \frac{x^4}{4.5} + \dots, \text{ GROOIGO } x > 0.$$

- 14. (i) Show that the function $f(z) = \sqrt{|xy|}$ is not analytic at the origin even though Cauchy-Riemann equations are satisfied thereof. Function $f(z) = \sqrt{|xy|}$ origin 6ର analytic କୁହେଁ ଯଦିଓ Cauchy-Riemann equation ଗୁଡ଼ିକ ଏଥିରେ ସନ୍ତୁଷ୍ଟ, ଦର୍ଶାଅ
 - (ii) Find the sum of the residues of $f(z) = \frac{\sin z}{z \cos z}$ at its poles inside the circle |z| = 2.

Circle |z| = 2 ଭିତରେ ଥିବା poles ରେ $f(z) = \frac{\sin z}{z \cos z}$ ର sum of the residues କୁ ବାହାର କର ।

15. (i) Using the ε - δ definition, prove that $f(x) = \sqrt{x}$ is differential at x = 3.

- arepsilon- δ ସଂଜ୍ଞା ବ୍ୟବହାର କରି, ପ୍ରମାଶ କର ଯେ $f(x)=\sqrt{x}$, x=3 ରେ ଭିନ୍ନ ଅଟେ ।
- (*ii*) Find the asymptotes of $(x + y)^2(x + y + 2) = x + 9y 2$. 20 $(x + y)^2(x + y + 2) = x + 9y 2$ ର asymptotes ଗୁଡ଼ିକ ବାହାର କର ।

Candidate must not write on this margin.

20

/110

16. (i) Find the area enclosed by the curves $x^2 = 8y$ and $y = \frac{64}{x^2 + 16}$. this margin. $x^2 = 8y$ ଏବଂ $y = \frac{64}{x^2 + 16}$ ବକ୍ରଗୁଡ଼ିକ ଦ୍ୱାରା ଆବନ୍ଧ ସ୍ଥାନକୁ ଖୋଜ । (ii) Test for the convergence for the improper integral $\int_{-\infty}^{\infty} \frac{\sin x}{x} dx$. 20 Improper integral $\int_{-\infty}^{\infty} \frac{\sin x}{x} dx$ ପାଇଁ convergence କୁ ପରୀକ୍ଷଣ କର । 17. State Stokes' theorem and deduce Green's theorem from Stokes' theorem. Verify Stokes' theorem for $\vec{F} = (x^2 + y^2)i - 2xyj$ taken around the rectangle bounded by the lines $x = \pm a, y = 0, y = b$. 20 Stokes' theorem କୁ ଦର୍ଶାଅ ଏବଂ Green's theorem କୁ Stokes' theorem ରୁ ବାହାର କର | Stokes' theorem କୁ ଯାଞ୍ଚ କର $\vec{F} = (x^2 + y^2)i - 2xyj$, $x=\pm a,\,y=0,\,y=b$ ରେଖାଗୁଡ଼ିକ ଦ୍ୱାରା ସୀମିତ ଆୟତାକାର ଚରିପାଖରେ ନିଆଯାଇଛି । 18. State Gauss divergence theorem and verify Gauss divergence theorem for $\vec{F} = (x^2 - yz)i + (y^2 - zx)j + (z^2 - xy)k$ taken over the rectangular parallelepiped $0 \le x \le a, 0 \le y \le b, 0 \le z \le c$. 20 Gauss divergence theorem କୁ ଦର୍ଶାଅ ଏବଂ Gauss divergence theorem କୁ ଯାଞ୍ଚ କର । $0 \le x \le a, 0 \le y \le b, 0 \le z \le c$ ଉପରେ ନିଆଯାଇଥିବା $\vec{F} = (x^2 - yz)i + (y^2 - zx)j + (z^2 - xy)k$ ପເລັ * * *

CSM-46/22

PPP24/3(092)-182