

The figures in the right-hand margin indicate marks.

Candidates should attempt any $\mathbf{1 0}$ (ten) questions of GROUP-A with word limit of 250 words and should attempt any 5 (five) questions from GROUP-B with word limit of 300 words.

GROUP-A

1. (i) Find the Thevenin's equivalent circuit of the given figure. $71 / 2$ घघ® ถิญ6ด Thevenin's equivalent circuit గิอุઘఠા ถด।

(ii) A signal is represented by

$$
X(t)=\left\{\begin{array}{c}
1|t|<1 \\
1|t|>1
\end{array}\right.
$$

The Fourier transfer of the convolved signal
Convolved signal Q Fourier 』ด｜马Q

$$
Y(t)=X(2 t)+X(t / 2)
$$

2．（i）A series $R-L-C$ circuit is observed at two frequencies．At $\omega_{1}=1 \mathrm{krad} / \mathrm{s}$ ，we note that source voltage $V_{1}=100 \angle 0^{\circ} \mathrm{V}$ results in current $I_{1}=0.03 \angle 31^{\circ} \mathrm{A}$ ．At $\omega_{2}=2 \mathrm{krad} / \mathrm{s}$ ，the source voltage $V_{2}=100 \angle 0^{\circ} \mathrm{V}$ results in a current $I_{2}=2 \angle 0^{\circ} \mathrm{A}$ ．Find out the value of R, L and C ． $71 / 2$

 $I_{1}=0.03 \angle 31^{\circ} \mathrm{A}$ । $\omega_{2}=2 \mathrm{krad} / \mathrm{s} 6 Q$ ，இ๑ voltage $V_{2}=100 \angle 0^{\circ} \mathrm{V}$

（ii）A non－salient pole synchronous generator having synchronous reactance of 0.8 pu is supplying 1 pu power to a 0.9 power factor load at a terminal voltage of $1 \cdot 1 \mathrm{pu}$ ．Neglecting the armature resistance，find the angle of the voltage behind the synchronous reactance with respect to the angle of the terminal voltage in degrees．
$0 \cdot 8 \mathrm{pu} Q$ synchronous reactance થૃロા VQ non－salient pole synchronous generator $Q 1.1$ pu Q terminal voltage 680.9 power

 6థा｜6 681® ।

3．（i）A $220 \mathrm{~V}, 15 \mathrm{~kW}, 1000$ r．p．m．shunt motor with armature resistance of 0.25Ω ，has a rated line current of 68 A and a rated field current of 2.2 A ．What change in field required to obtain a speed of 1600 r．p．m．while drawing a line current of 52.8 A and a field current of 1.8 A ． $71 / 2$ 0.25Ω Q armature resistance qशิ८ \downarrow 更 $220 \mathrm{~V}, 15 \mathrm{~kW}, 1000$ r．p．m． shunt motor $Q 68 \mathrm{~A} Q$ rated line current $\checkmark \square^{\circ} 2.2 \mathrm{~A} Q$ rated field

Candidate must not write on this margin．
(ii) Find the voltage gain A_{Vs} of the given circuit. घดด circuit 2 voltage gain A_{Vs} ब|शी पी ।

4. (i) If $V_{A}-V_{B}=6 \mathrm{~V}$, find $V_{C}-V_{D}$.

(ii) A diode circuit feeds an ideal inductor. Given $V_{S}=100 \sin (\omega t) \mathrm{V}$, where $\omega=100 \pi \mathrm{rad} / \mathrm{s}, L=31.83 \mathrm{mH}$. The initial value of inductor current is zero. Switch S is closed at $t=2.5 \mathrm{~ms}$. Find the peak value of inductor current i_{L} (in A) in the first cycle.

5. (i) A 3-phase, 50 Hz , six-pole induction motor has a rotor resistance of 0.1Ω and reactance of 0.92Ω. Neglect the voltage drop in stator and assume that the rotor resistance is constant. Given that the full load slip is 3%, find the ratio of maximum torque to full load torque.
$71 / 2$

Candidate must not write on this margin.
(ii) A perfectly conducting metal plate is placed in $x-y$ plane in a right-handed coordinate system. A charge of $+32 \pi \varepsilon_{0} \sqrt{2}$ coulombs is placed at coordinate $(0,0,2) . \varepsilon_{0}$ is the permittivity of free space. Assume $\hat{i}, \hat{j}, \hat{k}$ to be unit vectors along x, y and z axes respectively. At the coordinate $(\sqrt{2}, \sqrt{2}, 0)$, what will be the electric field vector \vec{E} (Newtons/Coulomb)? $\quad 71 / 2$

 $(\sqrt{2}, \sqrt{2}, 0) 62$ electric field vector \vec{E} (Newtons/Coulomb) 母'6 6 6 ? ?
6. (i) The average power of an omni-directional antenna varies as the magnitude of $\cos (\theta)$ where θ is the azimuthal angle. Calculate the maximum Directive Gain of the antenna and the angles at which it occurs.

(ii) Explain the principle of operation and applications of loop antenna.

7. (i) Draw the circuit diagram of ring modulator and explain with its operation.
 ®पाक्षा कर।
(ii) A normalised signal with 20 kHz bandwidth and 2 W power is transmitted via a channel with bandwidth of 100 kHz and loss of 50 dB by an FM modulator. Assume that the noise in the channel is additive and white with a power spectral density of $N_{0} / 2=10^{-12} \mathrm{~W} / \mathrm{Hz}$. To get an SNR of 30 dB at the receiver output-

Candidate must not write on this margin.

20 kHz bandwidth $\vee \square^{\circ} 2 \mathrm{~W}$ power ஏशิఠ $\checkmark \circ$ normalised signal 100 kHz Q bandwidth ஏ民ิ® ৩® channel Яાઘ્ઘ
 $N_{0} / 2=10^{-12} \mathrm{~W} / \mathrm{Hz}$ ถฺฺ spectral density ধโิ४ additive $\checkmark Q^{\circ}$ white । receiver output $6230 \mathrm{~dB} Q$ SNR घ।囚ロ｜झू ：
（a）what is the corresponding modulation index；

（b）what is the minimum required transmitter power？

8．（i）A voltage commutated chopper feeds power to a battery－power electric car．The battery voltage is 80 V ，starting current is 50 A and thyristor turn off time is $20 \mu \mathrm{sec}$ ．Calculate the values of the commutating capacitor C and the commutating inductor L ． $71 / 2$
$66^{1} \mid \widehat{\boxed{ }} \downarrow$ voltage commutated chopper \checkmark Q battery－power electric
 $50 \mathrm{~A} \checkmark Q^{\circ} \checkmark Q^{\circ}$ thyristor turn off time is $20 \mu \mathrm{sec}$ ．Commutating

（ii）An analog signal with bandwidth $B=6 \mathrm{kHz} . N=2^{m}$ point DFT to compute the spectrum of the resolution less than or equal to 200 Hz ．What is the minimum length of the analog signal recorded？ $71 / 2$

9．（i）Calculate the $A B C D$ parameter of the following two－port network．
$71 / 2$

Candidate must not write on this margin．
(ii) In a battery powered dc drive scheme, a chopper controlled motor rated at $70 \mathrm{~V}, 250 \mathrm{~A}$ and $2000 \mathrm{r} . \mathrm{p} . \mathrm{m}$. is separately excited at a flux corresponding to its full rating. The current pulsation during acceleration is maintained between 180 A and 230 A . The motor resistance is 0.045Ω, while the inductance is 7 mH . The battery resistance is 0.065Ω. Neglecting semiconductor losses, determine the chopping frequency and the duty cycle ratio when the speed is 1000 r.p.m.

 Q|6Q excited । Acceleration वЯณ6Q current pulsation 180 A Q
 inductance is 7 mH थ66 । Battery resistance $6 \unrhd \Omega$ § $0 \cdot 065 \Omega$ ।
 frequency $\vee Q^{\circ}$ duty cycle ratio గิสુંa $Q Q$ ।
10. (i) In the parallel $R-L-C$ circuit $R=8 \mathrm{k} \Omega, L=0.2 \mathrm{mH}$ and $C=8 \mu \mathrm{~F}$. Calculate ω_{0}, Q and B. Find ω_{1} and ω_{2}, power dissipated at ω_{0}, ω_{1} and ω_{2}.

(ii) Design a band-pass filter to pass frequencies between 250 Hz and 3000 Hz and with $K=10$. Take $R=20 \mathrm{k} \Omega$. $71 / 2$

11. (i) Sketch and explain the open circuit and short circuit characteristics of a synchronous machine.

(ii) An autotransformer has a primary winding with 200 turns and a secondary winding with 50 turns. Calculate the turns ratio $\left(N_{1} / N_{2}\right)$, voltage transformation ratio and the percentage impedance transformation, if the impedance on the secondary side is 8 ohms.

Candidate must not write on this margin.

 voltage transformation ratio $\checkmark Q^{\circ}$ percentage impedance
 impedance 8 ohms 乌ゝ।

12．（i）Design a 2 decade BCD D／A converter．Write the characteristic of D／A converter．

2 decade BCD D／A converter design घগ్తి คQ। D／A converter Q characteristic 6m\＆।
（ii）For a discrete－time system，the transfer function is given by

$$
H(z)=\frac{X(z)}{Y(z)}=\frac{z+1}{z^{2}-0 \cdot 9 z+0 \cdot 25 z+1}
$$

（a）Determine the difference equation that represents the system．

（b）Find the impulse response $h[n]$ of the system．
System Q impulse response $h[n] 6810$ ।
（c）Determine，if the system is stable．

GROUP－B

13．（i）Derive the mathematical expression for energy stored in electric field．If $V=y x^{2}+z x+x y \mathrm{~V}$ ．Do the analysis of \vec{E} at $(2,3,7)$ and the electrostatic energy stored in a cube of side 4 m centered at origin．
 $V=y x^{2}+z x+x y \mathrm{~V}$ । $(2,3,7) 62 \vec{E}$ 凹ू ปロ゚ origin 62 6Q

（ii）Draw the logic symbol of J－K flip－flop and explain the operation
of it．Explain what is race around condition． 10

Candidate must not write on this margin．

14．（i）What is MOS logic？Explain．Using MOS logic，represent NOR and NAND gates．

（ii）What is K－map？Write the advantages of K－map．Minimize the four－variable logic function using K－map

$$
\begin{equation*}
f(A, B, C, D)=\sum m(0,1,2,3,5,7,8,9,11,14) \tag{10}
\end{equation*}
$$

 variable logic function minimize $Q \mathrm{Q}$ ।

15．（i）Design a capacitance multiplier circuit using Op－Amp，where output capacitance is 100 times that of input capacitance． 10
 6风囚ัOI62 output capacitance input capacitance \＆ 100 ฐૂธ ๆ66 ।
（ii）Explain the operation of Wien bridge oscillator．Design a Wien bridge oscillator circuit to oscillate at 100 kHz ．What are Barkhausen criteria？

 criteria＠＇ธ？

16．（i）Design the ladder network terminated with a 1Ω resistor that has the normalised transfer function．
 6ઘถันุโล normalised transfer function อฉิลิ ।

$$
H(s)=\frac{1}{s^{3}+2 s^{2}+2 s+1}
$$

（ii）A $230 \mathrm{~V}, 1500$ r．p．m．， 20 A separately excited dc motor is fed from 3－phase full converter．Motor armature resistance is 0.6Ω ． Full converter is connected to $400 \mathrm{~V}, 50 \mathrm{~Hz}$ source through a delta－star transformer．Motor terminal voltage is rated when converter angle is zero．

 resistance 6๕®ฎ 0.6Ω । Full converter V的 delta－star transformer
 696m，motor terminal voltage ตূm4｜ळૂ ตQ।

Candidate must not write on this margin．
(a) Calculate the transformer phase turns ratio from primary to secondary.
Transformer phase turns ratio ฐ gાથศิถQ secondary ฐ สఠగ जQ।
(b) Calculate the firing angle delay of the converter when the motor is running at 1000 r.p.m. at rated torque.

17. (i) A 280 V , two-pole, 60 Hz Y -connected wound-rotor induction motor is rated at 15 hp . Its equivalent circuit components are : $R_{1}=0.3 \Omega, R_{2}=0.15 \Omega, X_{m}=16 \Omega$, $X_{1}=0.51 \Omega, X_{2}=0.42 \Omega, P_{\text {mech }}=260 \mathrm{~W}, P=160 \mathrm{~W}$, slip $=0.05$. Find the line current, the stator copper loss, the load torque, the overall efficiency of the motor, the rotor copper loss, motor speed in r.p.m.

$R_{1}=0.3 \Omega, R_{2}=0.15 \Omega, X_{m}=16 \Omega$,
$X_{1}=0.51 \Omega, X_{2}=0.42 \Omega, P_{\text {mech }}=260 \mathrm{~W}, P=160 \mathrm{~W}$, slip $=0.05$.
Current line, stator copper loss, load torque, motor Q overall efficiency, rotor copper loss, r.p.m. 62 motor speed £ 681囚 ।
(ii) At what distance is the radiation component of magnetic field twice the inductance component? At what distance is it 100 times?
 6ดถั घूดย162 ปश 100 थด?
18. (i) Discuss about spherical waves and biconical antenna. 10

(ii) Discuss the coherent detection of DSB-SC modulated wave with a block diagram of detector and explain.

10

