CSM-20/22
CIVIL ENGINEERING
PAPER-I

Candidate
must not
write on this margin.

The figures in the right-hand margin indicate marks.

Candidates should attempt any $\mathbf{1 0}$ (ten) questions of GROUP-A with word limit of 250 words and should attempt any 5 (five) questions from GROUP-B with word limit of 300 words.

GROUP-A

1. Two blocks of equal weight W connected by an inextensible string are placed over a pulley and rest over one horizontal plane and an inclined plane as shown in the figure below. If the coefficient of friction is $1 / \sqrt{3}$ for all contiguous surfaces, find the minimum value of the angle A such that the two blocks will start to slide down.

2. A horizontal rigid bar of length $L=1600 \mathrm{~mm}$ is hinged to a support at A and supported by two vertical wires attached at points C and D. Both the wires have same cross-sectional area of $16 \mathrm{~mm}^{2}$ and are made up of same material of Young's modulus $E=2.0 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$. The wire at $C(A C=0.5 \mathrm{~m})$ is of 0.4 m long and the wire at $D(A D=1.2 \mathrm{~m})$ is of 0.8 m long. Determine the tensile stresses in both the wires.

3. A gun having a constant muzzle velocity is aimed to hit an enemy target on the horizontal plane. The shell falls 10 m short of the target if the angle of projection is 15° and it overshoots the target by 25 m , if the angle of projection is 40°. Neglecting air resistance, determine the distance of the target and the correct angle of projection to hit the target.

4. For the state of stress shown, the normal and shearing stresses are directed as shown in the figure below with normal stress $\sigma_{x}=60 \mathrm{~N} / \mathrm{mm}^{2}$ and shearing stress $\tau_{x y}=35 \mathrm{~N} / \mathrm{mm}^{2}$. Determine the principal stresses and orientation of the principal planes.

2

Candidate must not write on this margin.
5. A steel pipe of 100 mm external diameter and 2.4 m long is fixed to an immovable support rigidly at one end. It supports two identical loads of 2.2 kN each at midspan and at the other end. If permissible normal stress of the material is $165 \mathrm{~N} / \mathrm{mm}^{2}$, determine the thickness of the pipe. Pipes are available in 2 mm increment in thickness.

 6Я166@62 @aกセ |
6. What are liquid limit and plastic limit of a soil? The Atterberg limits of a soil sample are $W_{L}=50 \%, W_{P}=30 \%$ and $W_{S}=15 \%$. If the specimen of this soil shrinks from a volume of $10 \mathrm{~cm}^{3}$ at liquid limit to $5.94 \mathrm{~cm}^{3}$ when it is oven dried, calculate shrinkage ratio and specific gravity of the soil.

7. A three-hinged parabolic arch $A B C$ of span 30 m has its supports at depths of 4 m at A and 16 m at B below the crown hinge C. The arch carries a point load of 60 kN at a distance of 5 m from the crown C in the segment $A B$ and a point load of 120 kN at a distance of 10 m from the crown C in the segment $B C$. Find the support reactions and bending moments under the loads. 15

Candidate

 must not write on this margin.8. A masonry retaining wall of trapezoidal section is 6 m high and 1 m wide at the top retaining soil level with its top. Find the minimum width of the wall at the base so that tension will not be induced at the base of the retaining wall. Unit weights of masonry and soil are 23 kN and 16 kN per cubic meter respectively. Angle of repose of the soil is 30° and back face of the wall supporting the soil is vertical.

9. A cable of span L has its ends at heights h_{1} and h_{2} above the lowest point of the cable. It carries a uniformly distributed load of W per unit run of the span. Determine the vertical and horizontal reactions at each end.

10. What is a stream function? A velocity field is specified as $\vec{V}=a x^{2} \hat{i}+b x y \hat{j}$, where $a=2 \mathrm{~m}^{-1} \mathrm{~s}^{-1}$ and $b=-4 \mathrm{~m}^{-1} \mathrm{~s}^{-1}$ and the coordinates are measured in meters. Calculate the velocity components at $(2,1 / 2,0)$. Develop an equation for the streamline passing through this point.

11. Derive the momentum equation for an incompressible and inviscid fluid.

Candidate

 must not write on this margin.12. A short circular column 6 m long is to carry a characteristic load of 250 kN . Assuming both the ends of the column are fully restrained, design the column size and the vertical reinforcement.

GROUP-B

13. A simply supported beam of span 5 m carries a uniform load of $32 \mathrm{kN} / \mathrm{m}$ over the entire span. The beam is built of a wooden member of cross-section of width 150 mm and depth 250 mm . To strengthen the wooden beam, two steel plates of 150 mm width and 50 mm thick are attached both at the top and bottom faces of this wooden beam such that no slip occurs at the interfaces. Determine the maximum normal stress in the wooden and the steel part of the beam. The modulli of elasticity of wood and steel are 210 GPa and 110 GPa respectively.
Span 5 m Q VQ এ®๐ ઘ

 $\checkmark ๑^{\circ} 110 \mathrm{GPa}$
14. A continuous frame $A B C$ has the vertical part $A B$ fixed at A and the horizontal part $B C$ is supported over a roller support at C. The joint B is a rigid joint. Members $A B$ and $B C$ have same length and flexural rigidity. A horizontal point load P acts at the mid-height of $A B$ in the direction of $B C$. Determine the reactions at A and C. Draw the bending moment diagram and find the maximum bending moment.

Candidate must not write on this margin.
15. A continuous beam $A B C D$ has a fixed support at A and roller supports at B and C. The end D is free. It supports a uniformly distributed load of $50 \mathrm{kN} / \mathrm{m}$ over the spans $A B$ and $B C$. A point load of 25 kN acts at the free end D. The spans are $A B=4 \mathrm{~m}, B C=3 \mathrm{~m}$ and $C D=2 \mathrm{~m}$. The flexural rigidity of $A B$ and $C D$ is $E I$ and that of $B C$ is 1.5 EI. Draw the bending moment and shear force diagram. 20
 घ6घi் ๆลை

 $\checkmark \square^{\circ} C D$ Q flexural rigidity 6民®ลิ $E I \checkmark \natural^{\circ} B C$ Q $1.5 E I$ । Bending moment

16. Two identical specimens of a soil were tested in a triaxial apparatus. First specimen failed at a deviator stress of $770 \mathrm{kN} / \mathrm{m}^{2}$ when the cell pressure was $200 \mathrm{kN} / \mathrm{m}^{2}$. The second specimen failed at a deviator stress of $1370 \mathrm{kN} / \mathrm{m}^{2}$ when cell pressure was $400 \mathrm{kN} / \mathrm{m}^{2}$. Determine the value of c and ϕ of the soil.

17. An angle ISA $100 \times 75 \times 8$ is used as a tension member and connected to a gusset plate of 16 mm thick by four numbers M 16 bolts in the long leg in one line. The pitch of the bolts is 75 mm and the edge distance is 40 mm . The bolt line is 40 mm from the open edge of the leg. Assuming the bolts do not fail prior to the member, calculate the maximum load the angle can carry. Consider the ultimate and yield stress of the plate material to be 540 MPa and 410 MPa respectively.

Candidate must not write on this margin.
 6ส1ธై d|

 6बाल ลิด|ด คด।
18. Design a beam section for flexure to carry a factored moment of 320 kNm . The section is restricted to a width of 300 mm and a depth of 600 mm . M25 grade concrete and Fe 415 grade steel are to be used.

