

Time: 3 hours

Full Marks: 300

The figures in the right-hand margin indicate marks.

Candidates should attempt Q. No. 1 from
Section – A and Q. No. 5 from Section – B
which are compulsory and any three of
the remaining questions, selecting
at least one from each Section.

SECTION - A

- 1. Answer any three questions of the following:
 - (a) (i) Classify the following examples into aromatic, anti-aromatic and nonaromatic. Justify your answer.

JV - 66/11

(Turn over)

(ii)	Predict the aromaticity of kekulene a		
	fulvenes.	10	

- (b) (i) Define primary and 3D structure of protein.
 - (ii) Write the name of polymer that is formed by the reaction of adipic acid and hexamethylenediamine. Explain the reaction mechanism of the same.

10

- (c) (i) Name the reaction in which alkene is synthesized from carbonyl compound.Explain its mechanism.
 - (ii) Write down the name reaction in which products are formed by the reaction of aldehydes having no alpha hydrogen.
 Define its mechanism.
 10
- (d) (i) The following data was obtained in the

determination of average molecular weight of a polymer: 10

Molecular weight		Weight (g)	
	80,000	1.0	
	50,000	3.0	
	30,000	5.0	
	10,000	6.0	

Calculate:

- (A) Number average molecular weight
- (B) Weight average molecular weight
- (C) Polydispersity index of the polymer
- (ii) Briefly describe Membrane osmometry method for the determination of number average molecular weight.
- Answer any three questions as directed :
 - (a) Indicate the products formed in the following reactions. Give the mechanism in each case

JV - 66/11 (3) (Turn over)

and draw the appropriate stereochemistry if desired: $5\times4=20$

(i)
$$Me$$

I. BH₃, THF

II. NaOH, H₂O₂

- (b) Answer the following questions: 5×4 = 20
 - (i) Among the norbornane derivatives the

JV - 66/11

(4)

acetolysis of (C) is 10¹¹ times faster than (A). While the acetolysis of (B) isomer is only 10⁴ times faster than (A). Explain.

(ii) The value of the barrier of rotation for the marked bond in A is only 14 kcal/mole. What could be the reason for this low barrier of rotation in this molecule?

(iii) Addition of triplet carbene to cis-2butene leads to a cis and trans products, whereas a singlet carbene gives only a cis product. Give mechanistic explanation. (iv) Comment on the selectivity shown in the following reaction :

(c) Predict the product of the following reactions and outline the mechanism involved in their transformation:
5×4 = 20

(i)
$$NH_2$$
 $NaHO_2/HCI$ $NaOMe/MeOH$ (iii) $NaOMe/MeOH$ $NaOMe/MeOH$

- (d) What do you know of electronic transition as applied to :
 - (i) Flurorescence and Phosphorescence 10
 - (ii) Charge-transfer complexes 5
 - (iii) Which solvents are generally used in
 U. V.-visible spectroscopy and why?
- 3. Attempt any two questions as directed :
 - (a) (i) Using Frontier orbital approach, predict whether the following transformation is thermally or photochemically allowed:

10

$$Me$$
 Me
 Me
 Me
 Me

(ii) How are the natural products formed by Witting reactions? Show the synthesis of vinyl halides and ethers by the reactions.

JV – 66/11 (7) (Turn over)

(b) Predict and explain the formation of the product in the following pericyclic reactions:
10×3 = 30

(c) By means of Woodward-Hoffmann selection rules predict the motions (conrotatory or disrotatory) for the following reactions:

 $10 \times 3 = 30$

(i)
$$H \xrightarrow{\Delta}$$

JV - 66/11

(8)

$$(ii) \begin{picture}(100,0) \put(0,0){\ootaline{100}} \put(0,0){\ootalin$$

- 4. Answer any three questions as directed :
 - (a) (i) What are salient features of Aldol condensation?
 - (ii) Explain cross-Aldol condensation between two different carbonyl compounds.5
 - (iii) Give the product of the following reactions:

- (b) (i) Explain the Sandmeyer reaction and give its mechanism. Write the applications of the reaction.
 - (ii) Give the mechanism of the followings: 10

$$CH_3$$

I. $CH_3-CH-COOC_2H_5+(C_6H_5)_3C^-$

$$(C_6H_5)_3CH$$
II. $C_6H_5COOC_2H_5 + CH_3COOC_2H_5$

$$\xrightarrow{\text{1. C}_2\text{H}_5\text{ONa}} \text{C}_8\text{H}_5\text{COCH}_2\text{COOC}_2\text{H}_5 +$$

C2H5OH

(c) (i) Give the reaction and product of the following:

10

When reduction of aliphatic and mixed aliphatic-aromatic carbonyl compounds takes place and when reduction of keto-acids takes place.

- (ii) Show the reaction and mechanism of Dieckmann reaction. 10
- (d) (i) Name the following reaction and give the whole reaction and mechanism: 10 The condensation of aldehydes and ketones with compounds having active methylene group in presence of basic catalyst and form α, β-unsaturated compounds.
 - (ii) Perkin reaction has many useful synthetic applications. Explain any four reactions.
- (e) (i) Explain the Reimer-Tiemann Reaction, its mechanism and reaction conditions.

(ii) Show the mechanism and applications of Reformatsky reaction. 10

10

SECTION - B

- Answer any three questions of the following:
 - (a) (i) Which of the following annulenesis are aromatic ? Justify your answer.
 10

(A) 8-Annulene

JV - 66/11 (11) (Turn over)

- (B) 10-Annulene
- (C) 12-Annulene
- (ii) Give the products of the following reactions and explain their aromaticity:

10

(ii)
$$\bigwedge^{\text{Br}} \xrightarrow{\text{AgNO}_3}$$

$$\text{(iv)} \quad \stackrel{\mathsf{OH}}{ } \stackrel{\mathsf{H}^+}{ } \rightarrow$$

 (b) (i) Which method is generally used to prepare silicone and silicates? Explain its mechanism and applications.

JV - 66/11

(12)

- (ii) Which catalyst is used to synthesize syndiotactic polypropylene? Describe its mechanism and applications.
- (c) Explain the following reaction and give two applications:
 - (i) Skraup synthesis
 - (ii) Von Richter reactions
- (d) (i) Define isoelectric point of amino acid.

 Draw the Zwitter ions form of the following amino acids:

 10
 - (A) Valine
 - (B) Phenylalanine
 - (C) Glutamine
 - (ii) Write the equation for the transamination reaction between alanine and oxaloacetate. Name the products that are formed.
- (e) (i) Give an account of end group analysis method used for determination of

- molecular weight of polymer. Calculate molecular weight of polypropylene whose DP value is 2000.
- (ii) Explain how thermal transitions in polymers are measured by using DSC technique. How does hydrogen bonding effects Tg and Tm of polymers ? Among Nylon 66 and Kevlar fibers, which is more crystalline and why?
- 6. Answer any six questions of the following:

 $10 \times 6 = 60$

(c)
$$\rightarrow$$
 OAc \rightarrow SeO₂ \rightarrow

JV - 66/11

(14)

(g) How N-bromosuccinamide is prepared? Show its reaction conditions. How it is used as a brominating and oxidizing agent? Show the degradation of amino acids with Nbromosuccinamide.

Attempt any three of the following :

- (a) (i) The UV spectrum of propanone shows two absorption maxima at 190 $(\epsilon = 1100)$ and 279 $(\epsilon = 15)$ nm, explain which among them is due to n- π * transition.
 - (ii) Define the terms: Zero field splitting and Kramers degeneracy in ESR.5

JV - 66/11

(15)

(Turn over)

- (iii) Write a mechanism for the formation of cyclobutane from the photolysis of cyclopentanone.
- (b) (i) Differentiate between the photochemical and thermal reactions.5
 - (ii) Arrange these compounds in increasing order for the ease of Norrish type-II reaction with the explanation.

(iii) Complete the following photochemical reaction:

(c) (i) Predict the product of the following reaction:

$$C_6H_5$$
 C_6H_5
 C_6H_5

JV - 66/11

(16)

(ii) Suggest a mechanism for the following reaction:

$$H_2C = CH - C = CH_2 \xrightarrow{hv} H$$

(iii) Predict the outcomes in the following reactions:

$$\begin{array}{c|c} & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

(d) (i) Identify the type of reaction and predict the product/s in the following reaction :

6

(ii) Write the mechanism for the following type of reactions: Norrish type-1,

JV - 66/11 (17) . (Turn over)

Norrish	type-II	and	Paterno	Buchi
reaction.				6

(iii) What are the mechanistic paths in the following reactions:

$$L H_2C = CH - C = CH_2 \xrightarrow{hv} (C_0H_5)_2CO$$

II.
$$H_2C = CH - C = CH_2$$
 H

hv (250nm)

pentane

- 8. Answer any six questions of the following:
 - (a) (i) Write the expected I. R. peaks for the following compounds: 1×5 = 5
 - (I) p-nitrophenol
 - (II) Acetic anhydride
 - (III) Aceto phenol
 - (IV) Ethanol
 - (ii) Explain the electronic factors which influence the absorption frequency of I. R. spectra.
 - (b) (i) Write detailed note on spin-spin coupling in N. M. R. spectroscopy.

JV - 66/11 (18) Contd.

- (ii) What is meant by term chemical shift in N. M. R? Name the varoius factors on which the value of chemical shift depend and discuss one in detail.
- (c) (i) What do you understand by term "double resonance" in N. M. R. ? How it is helpful in simplifying the spectra?
 - (ii) Which of the following atoms do not exhibit N. M. R. peaks: 5 ¹²C, ¹⁶O, ¹⁴N, ¹⁵N, ²H, ¹⁹F, ¹³C, ³¹P

How many kinds of '1Hs are there in:

 $CH_3 - CH_2 - CH_3$, $CH_2 = CH_2$, $CH_3 - CH = CH_2$, $C_6H_5 - CH_3$

- (d) (i) Write notes of the following for N.M.R.: 5

 Nuclear over-hauser effect

 Deuterium exchange reactions
 - (ii) How many N.M.R. signals are expected in each of the following compounds? 5
 Propane, isobutene, ethanol, cyclobutane, ethyl methyl ether, butanol, caprolactum, glycol, α-alanine.
- (e) (i) What are important features of the mass spectra of Hydrocarbons? Give examples.

5

(ii)	Discuss nitrogen rule in mass spectrometry. 5
) (i)	What are general fragmentation modes in mass spectrometry? Explain all. 5
(ii)	Describe the fragmentation of 2-pentene and benzene mass spectra. 5
g) (i)	Show the graph of mass spectrum of 1-butanol and 2-butanol. Explain the fragmentation modes also.
(ii)	Determine the structure of the compound whose m/e values in the mass spectrum are 100, 85, 75, 57, 43 (base), 41, 29 and 27.
h) (i)	Write notes on following mass spectra: Meta stable peaks, molecular ion peak and relative abundance of the parent and fragmentations.
(ii	Define following in UV spectra- Bathochromic effect, Hypsochromic effect, Hyperchromic effect, Hypochromic effect, K-band, B-band, R-band, E-band.