CSM - 68/19 Statistics Paper - I

Time: 3 hours

Full Marks: 300

The figures in the right-hand margin indicate marks.

Candidates should attempt Q. No. 1 from Section – A and Q. No. 5 from Section – B which are compulsory and any **three** of the remaining questions, selecting at least **one** from each Section.

SECTION - A

- 1. Attempt any **three** of the following sub-parts: $20 \times 3 = 60$
 - (a) Let $\{X_n\}$ be a sequence of random variables. If $X_n \xrightarrow{a. s.} X$, where X is a random variable, then show that $g(X_n) \xrightarrow{a. s.} g(X)$ where g is a continuous function.

(Turn over)

- (b) Explain the properties of characteristic function. Hence using characteristic function, find out the mean and variance of Poisson distribution.
- (c) Show that if $X_3 = aX_1 + bX_2$, the three partial correlations are numerically equal to unity, $r_{13.2}$ having the sign of a, $r_{23.1}$, the sign of b and $r_{12.3}$, the opposite sign of a/b.
- (d) If X ~ N(μ, Σ), then prove that Y = CX is
 distributed according to N(Cμ, CΣC') for C non singular.
- (a) State and prove Khinchine's weak law of large numbers.
 - (b) X and Y are two random variables having the joint density function $f(x, y) = \frac{1}{27}(2x + y)$, where x and y can assume only the integer values 0, 1 and 2. Find the conditional distribution of Y for X = x.
 - (c) A coin is tossed until a head appears. What is the expectation of the number of tosses required?
 20×3 = 60

- 3. (a) Show that Poisson distribution is a limiting case of the negative Binomial distribution.
 - (b) If X and Y are independent Gamma variates with parameters μ and υ respectively, show that u = X + Y, $Z = \frac{X}{Y}$ are independent and that u is a $\Gamma(\mu + \upsilon)$ variate and Z is a $\beta_2(\mu, \upsilon)$ variate.
 - (c) State and prove Gauss-Markov theorem and explain its applications in linear estimation. 20×3 = 60
- 4. (a) If r_{12} and r_{13} are given, show that r_{23} must lie in the range:

$$r_{12}r_{13} \pm \left(1 - r_{12}^2 - r_{13}^2 + r_{12}^2 r_{13}^2\right)^{1/2}$$

If $r_{12} = k$ and $r_{13} = -k$, then show that r_{23} will lie between -1 and $1 - 2k^2$.

- (b) What is the relation between Hotelling's T² statistic and Mahalanobis D² statistic. Also show that T² is invariant under any linear transformation.
- (c) Let X₁, X₂, X_N be N independent observation vectors distributed according to

 $N_{p}(\mu, \Sigma)$. Then show that the marginal distribution of any subset of p-vectors is also a multivariate normal. $20 \times 3 = 60$

SECTION - B

Answer any three of the following sub-parts:

 $20 \times 3 = 60$

- (a) Show that the maximum likelihood estimators are consistent.
- (b) State and prove Wald's fundamental identity.
- (c) Prove that in simple random sampling without replacement, the sample mean square is an unbiased estimate of the population mean square.
- (d) Derive expressions to compare the efficiencies of L. S. D. with respect to R. B. D. and C. R. D.
- 6. (a) Show that an M. V. U. estimator is unique in the sense that if T_1 and T_2 are M. V. U. estimators for $y(\theta)$, then $T_1 = T_2$ almost surely.

Contd.

- (b) State and prove Cramer-Rao inequality.
- (c) Find out the B. C. R. for H_0 : $\sigma = \sigma_0$ against the alternative H_1 : $\sigma = \sigma_1$ for the normal distribution with zero mean and variance σ^2 . $20 \times 3 = 60$
- 7. (a) What are the advantages and disadvantages of non-parametric method over parametric methods? Discuss the Mann-Whitney-Wilcoxon test for the equality of two population distribution functions.
 - (b) Explain how SPRT differs from the Neyman-Pearson test procedure. Derive the OC function and ASN for the SPRT.
 - (c) What is the regression method of estimation?
 Compare the precision of the regression estimate with that of the ratio estimate.
- (a) Explain systematic sampling and discuss its advantages and disadvantages. Also obtain

- an estimate of the population variance based on the above method.
- (b) Describe the layout of a 2³ experiment where all the interactions are partially confounded. In such a case indicate d. f. s. and s. s's for all the components of treatment sum of squares.
- (c) Define a BIBD. State the important relations among the parameters of a BIBD and prove any two of them. 20×3 = 60

