

Physics

Paper - II

Time: 3 hours

Full Marks: 300

The figures in the right-hand margin indicate marks.

Candidates should attempt Q. No. 1 from
Section – A and Q. No. 5 from Section – B which
are compulsory and three of the remaining
questions, selecting at least one from each Section.

SECTION - A

- Answer any three of the following :
 - (a) (i) Discuss spectral distribution of black body radiation for two different temperatures.
 - (ii) Wein's radiation law is given by

$$E(\lambda, T) = \frac{ae^{-b/\lambda T}}{\lambda^5}$$
. Derive Wein's

displacement law from it. 10+10 = 20

WG - 59/4

(Turn over)

- (b) (i) Show that if a state $\Psi(x)$ has mean momentum , then $e^{-ip_0x/\hbar} \Psi(x)$ has mean momentum $-p_0$.
 - i) A quantum system is described by the Hamiltonian $H = \frac{p^2}{2m} + \frac{1}{\cosh^2 x}$. Show that $\Psi(-x) = \pm \Psi(x)$. $\Psi(x)$ is an eigen state of the Hamiltonian. 10+10=20
- (c) (i) Show that in the vector coupling model one may define an operator $\overrightarrow{L} \cdot \overrightarrow{S} = \frac{1}{2}$ $(\overrightarrow{J}^2 \overrightarrow{L}^2 \overrightarrow{S}^2)$. Does this operator commutes with J^2 ?
 - (ii) Calculate Lande's g factor for a single d electron. 10+10 = 20
- (d) (i) Why is the Na D line a doublet?
 - (ii) What is Raman Shift? Explain that it depends on the nature of the substance but not on the wavelength of the original line.
 5+15 = 20
- 2. (a) Derive the expression for probability current

density in non-relativistic quantum theory. Show that it satisfies a continuity equation.

(b) Find how E_n depends on the principle quantum number n, for a quantum system described by the Hamiltonian

$$H = \frac{p^2}{2m} + \alpha x^4.$$
 30+30 = 60

3. The ground state wave function for a ld SHO is

$$-\frac{mwx^2}{2\hbar}$$
 proportional to e

- (a) Normalize this wave function.
- (b) Calculate the uncertainty in x and p_x in this state.
- (c) Verify that these uncertainties satisfy Heisenberg uncertainty relation.

- (a) Discuss quantitatively the rotational and vibrational spectra of CO molecule.
 - (b) What is the principle of MossbauerSpectroscopy. Discuss the effect of magnetic field on it.35+25 = 60

$$WG - 59/4$$
 (3) (Turn over)

SECTION - B

5. Answer any three questions of the following:

 $20 \times 3 = 60$

- (a) Calculate the binding energy for the mirror nuclei K³⁹ and Ca³⁹ from the semi-empirical binding energy equation. What do you infer from this about the relative stabilities?
- (b) What are the roles of moderators and reflectors in fisson reactor? How critical size of a reactor is determined?
- (c) Calculate the threshold kinetic energy of proton to produce anti-proton through the reaction $p+p \rightarrow p+p+p+\overline{p}$.
- (d) Write the truth table for XOR and NOR gates.
 Design a two input XOR gate using NOR gates exclusively.
- (a) Discuss parity violation in β-decay. Mention how this can be experimentally verified.
 - (b) What are the limitations of nuclear shell model? 45+15 = 60

- 7. (a) What are the different processes through which charged particles and γ-rays lose energy when pass through matter?
 - (b) Give simple explanation of nuclear fission on the basis of liquid drop model.
 - (c) The Kinetic energy of the α -particle emitted from Po²¹⁰ has been found to be 5.3 MeV. Calculate α -disintegration energy.

20+20+20 = 60

- (a) What is meant by feedback in an amplifier?
 Draw block diagram of a feedback amplifier and obtain an expression for close loop voltage gain of the amplifier.
 - (b) What is the criterion of oscillation in an amplifier.Explain the action of a Hartley Oscillator.
 - (c) Explain Meissner effect in superconductor.

20+20+20 = 60

