

Time: 3 hours

Full Marks: 300

The figures in the right-hand margin indicate marks.

Candidates should attempt Q. No. 1 from Section - A and Q. No. 5 from Section - B which are compulsory and any three of the remaining questions, selecting at least one from each Section.

SECTION - A

- Answer any three of the following:
 - (a) Explain the rational of (i) no chart and (ii) C-chart. Describe how do you construct any one of these two charts. What are the salient differences between these two 20 charts?

	•
(b)	(i) Define the following:
	(A) Survival function
	(B) Hazard function
•	(ii) Derive the Hazard function of the
	following distributions:
	(A) Two parameter weibult
	(B) Rayleigh
	Examine whether Weibull distribution
	belongs to IFR class. 20
(c)	Describe the ARIMA model. Define ACF and
	PACF. Describe how do you determine the
	order of autoregressive moving average
	component?
(d)	Derive the role of the following agencies:
	e en e la contra da la compa 20
. ·	(i) < CSO (1) 1 (1) (1) (1) (1) (1) (1) (1) (1) (
	(ii) Césus office
ę.	(iii) NSSO
	(iv) Bureau of economics and statistics

2.	(a) Describe single double and s	equential
	-	sampling plans for attributes. Deri	ive the OC
		function for any one of the plans.	20

- (b) (i) With the example distinguish between:

 (A) Truncation and censoring
 - (B) Type-I and type-II censoring
 - (ii) When the failure time follows exponential distribution, derive the maximum likelihood estimator (MLE) of the parameter under type-I censoring. 20
- (c) Explain the components of a time series and distinguish between additive and multiplicative time series model. Describe any one of the procedure for eliminating the (i) trend (ii) cyclic Component of the time series.
- (a) What is cost of living index number? Explain any two methods of constructing this index number.

- (b) In linear model Y = Xβ + ε, derive the least square estimator of β when X' AX is of full rank. Show that this is an unbiased estimator.
- (c) What do you understand by multicollinearity?
 What are the consequences of multicollinearity? Describe any one procedure of handling multicollinearity.
 20
- 4. (a) What is autocorrelation? Describe any one procedure for detecting first order autocorrelation. How do you handle the first order autocorrelation?
 - (b) Describe the method of collection of official statistics on trade and prices. Comment of their limitations and reliability.
 - (c) Derive how agriculture census is conducted in India. Name the publication relating to agriculture census.

SECTION - B

5.	Answer any three of the following:				
•	(a)	Derive simplex procedure of solving LPP.			
		20			
	(b)	Derive storage models with reference to dam			
		type: 20			
	(c)	Derive how do you construct abridged life			
		table using vital rates. 20			
	(d)	Explain what do you understand by factor			
• :		analysis? Explain its uses in psychometry.			
	•	20			
6.	(a)	Describe two person zero sum game.			
		Indicate any real life application of this game.			
		20			
	(b)	Explain BIG M procedure of solving LPP.			
٠		Indicate its advantages over simplex			
		procedure. 20			
	(c)	Define Transition Probability Matrix (TPM)			
	٠	Discuss classification of states of TPM and			
		the associated Ergodic theorem. 20			

(Turn over)

7 .	(a)	Discuss the various fertility reproduction
**		rates.
	(b)	Describe the components of a life table and
		its uses. Discuss how do you construct cause
		specific life table. 20
	(c)	For an M/M/1: (α / FIFO), state the steady
		state difference equations and hence obtain
		the probability distribution under steady state.
		20
8.	(a)	Define the following and describe the
		limitations and their uses in psychometry.
		20
		(i) Z-scores
		(ii) Standard scores
		(iii) T-scores
		(iv) Percentile scores
	(b)	With reference to factor analysis, describe
		the following: 20
		(i) Procedure for identifying the optimum
	-	number of factors
		• •

- (ii) Rotation of factors and their uses
- (iii) Communality and factor scores
- (c) Explain what do you understad by path analysis? How the path coefficients are different from regression coefficients? 20

