

Time: 3 hours

Full Marks: 300

The figures in the right-hand margin indicate marks.

Candidates should attempt Q. No. 1 from
Section – A and Q. No. 5 from Section – B
which are compulsory and any three of
the remaining questions, selecting
at least one from each Section.

SECTION - A

- 1. Answer any three of the following:
 - (a) Describe any four experiments that showed the inadequacy of classical mechanics. 20
 - (b) Derive Schrodinger's wave equation for a free particle in one dimension and obtain its eigenvalues.
 20

RO - 63/6

(Turn over)

- (c) (i) The work function of a metal is $2.0 \times 10^{-19} \text{ J}$:
 - (A) Find the thrashold frequency for photoelectric emission.
 - (B) It the metal is exposed to a light beam of frequency 6.0 × 10¹⁴Hz, what will be the stopping potential? Given Planck's Constant h = 6.6 × 10⁻³⁴ Js.
 - (ii) Considering matter waves for microscopic system, calculate the de Broglie Wavelength of an electron moving with a velocity 2 × 10⁷ m/s.

Given Planck's Constant $h = 6.6 \times 10^{-34}$ J.s mass of the electron me = 9.1×10^{-31} kg.

10

(d) What is Raman Effect? Explain theoretically the observed characteristics of the Raman Spectrum of a diatomic molecule. How is it used to explain the structure of a molecule?

2. (a) Solve the Schrödinger Equation for the onedimensional potential step defined by

$$V(x) = 0 \quad x < 0$$

$$V(x) = +V_0 \quad x > 0$$

Explain reflection and transmission by such a potential step.

(b) Use the WKB formula for the calculation of lifetime in the α-decay of radioactive nucleus.

- 3. (a) Discuss the difference between Normal Zeeman effect and Anomalous Zeeman effect. Describe the experimental arrangement for normal Zeeman effect and explain anomalous Zeeman effect. 20
 - (b) Describe Stern-Gerlach experiment for the existence of space quantization. 20
 - (c) (i) What are L-S and J-J coupling schemes? Discuss the selection rules applicable in each case.

• •	Obtain the eigenvalues of the square of				
	the total angular momentum (L ²) and	its			
	Z-component L ₂ .	10			

 (a) Explain the phenomenon of Nuclear Magnetic Resonance (NMR). Discuss some important applications of NMR phenomenon.

30

(b) Explain Mössbauet effect. Describe the experimental arrangement of Mössbauer spectrometer with a neat diagram. Illustrate some important applications of Mössbauer Spectroscopy. 30

SECTION - B

- 5. Answer any three questions of the following:
 - (a) (i) Obtain the Weizsacker's semi empirical mass formula for a nucleus. Explain the contribution of each term.
 - (ii) Explain Meson theory of nuclear forces.

- (b) Explain the salient features of nuclear shell model. Discuss the successes and limitations of shell model.
- (c) (i) Explain violation of parity in beta decay.
 - (ii) Explain φ-value of nuclear reactions. 10
- (d) (i) Explain nuclear fission and nuclear fusion processes.
 - (ii) Discuss the source of energy in Sun andStars.
- 6. (a) (i) Discuss, in detail, the classification of elementary particles.
 - (ii) Analyse the following decays or reactions for possible violation of the basic conservation laws. State the type of interaction involved in each process:

$$k^{+} \rightarrow \pi^{+} + \pi^{+} + \pi^{0} + \pi^{-}$$

$$\pi^{-} + p \rightarrow \Lambda^{0} + \Sigma^{0}$$

$$\Omega^{-} \rightarrow \Sigma^{-} + k^{0}$$

$$\pi^{+} + n \rightarrow \Lambda^{0} + k^{+}$$
15

		(ii)	Discuss the elementary ideas	about
			unification of forces.	15
7.	(a)	(i)	Explain band theory of solids. I	Discuss
			how this theory leads to the class	ification
			of conductors insulators	and
	r gra		semiconductors.	20
		(ii)	Give an account of cubic	crystal
	3		structure.	10
	(b)	(i)	What is Meissner effect? Explai	n how a
			superconductor behaves like a	perfect
			diamagnet.	10
		(ii)	Illustrate the applications of Jos	ephson
			Junction.	10
		(iii)	Write a note on the properties	of high
			temperature super conductors.	10
8.	(a)	Exp	plain with necessary theory work	king of a
		Hai	rtley Oscillator.	20
RO-63/6			(6)	Contd.

(b) (i) Explain, in detail, the Quark structure of

hadrons.

7.

8.

- (b) Explain the different characteristics of an ideal operational amplifier. 20
- (c) (i) State and prove De Morgan's laws.

10

(ii) Explain how a NAND gate is a Universal gate. 10